Subpart 332.70—Electronic Submission and Processing of Payment Requests

Sec.
332.7000 Scope of subpart.
332.7001 Definitions.
332.7002 Policy.
332.7003 Contract clause.

Subpart 332.70—Electronic Submission and Processing of Payment Requests

332.7000 Scope of subpart.
This subpart prescribes policies and procedures for electronic submission and processing of payment requests.

332.7001 Definitions.

Payment request, as used in this subpart, is defined as a bill, voucher, invoice, or request for contract financing payment with associated supporting documentation. The payment request must comply with the requirements identified in FAR 32.905(b), Content of invoices, and the applicable Payment clause included in this contract.

332.7002 Policy.
(a) Contracts shall require the electronic submission of payment requests, except for—
(1) Purchases paid for with a Government-wide commercial purchase card; and
(2) Classified contracts or purchases when electronic submission and processing of payment requests could compromise classified information or national security.
(b) Where a contract otherwise requires the electronic submission of invoices, the Contracting Officer may authorize alternate procedures only if the Contracting Officer makes a written determination that:
(1) The Department of Health and Human Services (HHS) is unable to receive electronic payment requests or provide acceptance electronically;
(2) The contractor has demonstrated that electronic submission would be unduly burdensome; or
(3) The contractor is in the process of transitioning to electronic submission of payment requests, but needs additional time to complete such transition. Authorization granted on the basis of this paragraph (b)(3) must specify a date by which the contractor will transition to electronic submission.
(c) Except as provided in paragraphs (a) and (b) of this section, HHS officials shall process electronic payment submissions through the Department of the Treasury Invoice Processing Platform or successor system.
(d) If the requirement for electronic submission of payment requests is waived under paragraph (a)(2) or (b) of this section, the contract or alternate payment authorization, as applicable, shall specify the form and method of payment request submission.

332.7003 Contract clause.

Except as provided in 332.7002(a), use the clause at 352.232–71, Electronic Submission of Payment Requests, in all solicitations and contracts.

PART 352—SOLICITATIONS
PROVISIONS AND CONTRACT CLAUSES

3. The authority citation for part 352 continues to read as follows:

4. Add section 352.232–71 to read as follows:

352.232–71 Electronic submission of payment requests

As prescribed in HHSAR 332.7003, use the following clause:

Electronic Submission of Payment Requests (DATE TBD)

(a) Definitions. As used in this clause—
(1) “Payment request” means a bill, voucher, invoice, or request for contract financing payment with associated supporting documentation. The payment request must comply with the requirements identified in FAR 32.905(b), “Content of Invoices” and the applicable Payment clause included in this contract.
(b) Except as provided in paragraph (c) of this clause, the Contractor shall submit payment requests electronically using the Department of Treasury Invoice Processing Platform (IPP) or successor system.
Information regarding IPP, including IPP Customer Support contact information, is available at www.ipp.gov or any successor site.
(c) The Contractor may submit payment requests using other than IPP only when the Contracting Officer authorizes alternate procedures in writing in accordance with HHS procedures.
(d) If alternate payment procedures are authorized, the Contractor shall include a copy of the Contracting Officer’s written authorization with each payment request.

(End of Clause)

Xavier Becerra,
Secretary.

DEPARTMENT OF THE INTERIOR
Fish and Wildlife Service

50 CFR Part 17

[Docket No. FWS–R5–ES–2021–0029; FF09E21000 FXES1111090FEDR 223]

RIN 1018–BF69

Endangered and Threatened Wildlife and Plants; Endangered Species Status for Bog Buck Moth

AGENCY: Fish and Wildlife Service, Interior.

ACTION: Proposed rule.

SUMMARY: We, the U.S. Fish and Wildlife Service (Service), propose to list the bog buck moth (Hemileuca maia menyanthevora) (=H. iroquois), a moth that occurs in Oswego County, New York (NY), and Ontario, Canada, as an endangered species under the Endangered Species Act of 1973, as amended (Act). After a review of the best available scientific and commercial information, we find that listing the species is warranted. Accordingly, we propose to list the bog buck moth as an endangered species under the Act. If we finalize this rule as proposed, it would add this species to the List of Endangered and Threatened Wildlife and extend the Act’s protections to the species. We have determined that designation of critical habitat for the bog buck moth is not prudent at this time.

DATES: We will accept comments received or postmarked on or before December 13, 2021. Comments submitted electronically using the Federal eRulemaking Portal (see ADDRESSES, below) must be received by 11:59 p.m. Eastern Time on the closing date. We must receive requests for a public hearing, in writing, at the address shown in FOR FURTHER INFORMATION CONTACT by November 29, 2021.

ADDRESSES: You may submit comments by one of the following methods:
(1) Electronically: Go to the Federal eRulemaking Portal: http://www.regulations.gov. In the Search box, enter the docket number or RIN for this rulemaking (presented above in the document headings). For best results, do not copy and paste either number; instead, type the docket number or RIN into the Search box using hyphens. Then, click on the Search button. On the resulting page, in the panel on the left side of the screen, under the Document Type heading, check the Proposed Rule box to locate this document. You may submit a comment by clicking on “Comment.”

We request that you send comments only by the methods described above. We will post all comments on http://www.regulations.gov. This generally means that we will post any personal information you provide us (see Information Requested, below, for more information).

FOR FURTHER INFORMATION CONTACT:

SUPPLEMENTARY INFORMATION:

Executive Summary

Why we need to publish a rule. Under the Act, if we determine that a species warrants listing, we are required to promptly publish a proposal in the Federal Register, unless doing so is precluded by higher-priority actions and expeditious progress is being made to add and remove qualified species to or from the List of Endangered and Threatened Wildlife and Plants. The Service will make a determination on our proposal within 1 year. If there is substantial disagreement regarding the sufficiency and accuracy of the available data relevant to the proposed listing, we may extend the final determination for not more than six months. To the maximum extent prudent and determinable, we must designate critical habitat for any species that we determine to be an endangered or threatened species under the Act. Listing a species as an endangered or threatened species and designation of critical habitat can only be completed by issuing a rule.

What this document does. We propose to list the bog buck moth as an endangered species under the Act.

The basis for our action. Under the Act, we may determine that a species is an endangered or threatened species because of any of five factors: (A) The present or threatened destruction, modification, or curtailment of its habitat or range; (B) overutilization for commercial, recreational, scientific, or educational purposes; (C) disease or predation; (D) the inadequacy of existing regulatory mechanisms; or (E) other natural or manmade factors affecting its continued existence. We have determined that the bog buck moth is at risk of extinction now throughout its range due to a combination of factors. Bog buck moth populations undergo boom and bust cycles and are highly vulnerable to threats during the bust phase (Factor E). All populations are isolated from one another (Factor E). Extant populations are experiencing some degree of habitat alteration from invasive plant species and habitat succession (Factor A). Flooding may vary different life stages of bog buck moths or reduce suitable habitat either by directly making it unavailable (under water) or reducing survival and growth of bog buck moth larvae (Factor A). Flooding has increased at one New York population over the past several years due to increased winter and spring precipitation from climate change and high Great Lakes water levels (Factor E). Water level management has altered or has the potential to alter several bog buck moth sites (Factor A). Additionally, the sedentary nature of the bog buck moth means that colonization of neighboring fens does not occur naturally, further limiting the species’ ability to respond to stochastic changes (Factor E).

Section 4(a)(3) of the Act requires the Secretary of the Interior (Secretary) to designate critical habitat concurrent with listing to the maximum extent prudent and determinable. We have determined that designating critical habitat for the bog buck moth is not prudent because the moth co-occurs with another species that is highly collected and designating critical habitat for the moth would increase the risk of collection for the other species.

Information Requested

We intend that any final action resulting from this proposed rule will be based on the best scientific and commercial data available and be as accurate and as effective as possible. Therefore, we request comments or information from other concerned governmental agencies, Native American Tribes, the scientific community, industry, or any other interested parties regarding this proposed rule.

We particularly seek comments concerning:
(1) The bog buck moth’s biology, range, and population trends, including:
(a) Biological or ecological requirements of the species, including habitat requirements for feeding, breeding, and sheltering;
(b) Genetics and taxonomy;
(c) Historical and current range, including distribution patterns;
(d) Historical and current population levels, and current and projected trends; and
(e) Past and ongoing conservation measures for the species, its habitat, or both.

(2) Factors that may affect the continued existence of the species, which may include habitat modification or destruction, overutilization, disease, predation, the inadequacy of existing regulatory mechanisms, or other natural or manmade factors.

(3) Biological, commercial trade, or other relevant data concerning any threats (or lack thereof) to this species and existing regulations that may be addressing those threats.

(4) Additional information concerning the historical and current status, range, distribution, and population size of this species, including the locations of any additional populations of this species.

(5) The reasons why we should or should not designate habitat as “critical habitat” under section 4 of the Act, including information to inform the following factors that the regulations identify as reasons why designation of critical habitat may be not prudent:
(a) The species is threatened by taking or other human activity and identification of critical habitat can be expected to increase the degree of such threat to the species;
(b) The present or threatened destruction, modification, or curtailment of a species’ habitat or range is not a threat to the species, or threats to the species’ habitat stem solely from causes that cannot be addressed through management actions resulting from consultations under section 7(a)(2) of the Act;
(c) Areas within the jurisdiction of the United States provide no more than negligible conservation value, if any, for a species occurring primarily outside the jurisdiction of the United States; or
(d) No areas meet the definition of critical habitat.

Please include sufficient information with your submission (such as scientific journal articles or other publications) to allow us to verify any scientific or commercial information you include.

Please note that submissions merely stating support for, or opposition to, the action under consideration without providing supporting information, although noted, will not be considered in making a determination, as section 4(b)(1)(A) of the Act directs that determinations as to whether any species is an endangered or a threatened species must be made “solely on the basis of the best scientific and commercial data available.”
You may submit your comments and materials concerning this proposed rule by one of the methods listed in ADDRESSES. We request that you send comments only by the methods described in ADDRESSES. If you submit information via http://www.regulations.gov, your entire submission—including any personal identifying information—will be posted on the website. If your submission is made via a hardcopy that includes personal identifying information, you may request at the top of your document that we withhold this information from public review. However, we cannot guarantee that we will be able to do so. We will post all hardcopy submissions on http://www.regulations.gov.

Comments and materials we receive, as well as supporting documentation we used in preparing this proposed rule, will be available for public inspection on http://www.regulations.gov.

Because we will consider all comments and information we receive during the period, our final determination may differ from this proposal. Based on the new information we receive (and any comments on that new information), we may conclude that the species is threatened instead of endangered, or we may conclude that the species does not warrant listing as either an endangered species or a threatened species.

Public Hearing

Section 4(b)(5) of the Act provides for a public hearing on this proposal, if requested. Requests must be received by the date specified in DATES. Such requests must be sent to the address shown in FOR FURTHER INFORMATION CONTACT. We will schedule a public hearing on this proposal, if requested, and announce the date, time, and place of the hearing, as well as how to obtain reasonable accommodations, in the Federal Register and in local newspapers at least 15 days before the hearing. For the immediate future, we will provide these public hearings using webinars that will be announced on the Service’s website, in addition to the Federal Register. The use of these virtual public hearings is consistent with our regulations at 50 CFR 424.16(c)(3).

Previous Federal Actions

We identified the bog buck moth (Hemileuca sp.) as a Category 2 candidate species for listing in the November 21, 1991, Annual Candidate Notice of Review (56 FR 58994). In the February 28, 1996, Annual Candidate Notice of Review (61 FR 7596), we announced our discontinuation of the designation of Category 2 species as candidates, which removed the species from the candidate list. We finalized our decision to discontinue the practice of maintaining a list of Category 2 species on December 5, 1996 (61 FR 64481).

At our discretion, we prioritized a status review for the species according to the Service’s July 27, 2016, Methodology for Prioritizing Status Reviews and Accompanying 12-Month Findings on Petitions for Listing Under the Endangered Species Act (81 FR 49248) and added the species to the Endangered Species Program’s National Listing Workplan (Workplan) for Fiscal Year 2021. Based on this process, we are making a determination on the bog buck moth’s listing status in this proposed rule.

Supporting Documents

A species status assessment (SSA) team prepared an SSA report for the bog buck moth. The SSA team, composed of Service biologists and a New York State Department of Environmental Conservation (NYSDEC) biologist, conducted the SSA in consultation with other species experts. The SSA report represents a compilation of the best scientific and commercial data available concerning the status of the species, including the impacts of past, present, and future factors (both negative and beneficial) affecting the species. In accordance with our joint policy on peer review published in the Federal Register on July 1, 1994 (59 FR 34270), and our August 22, 2016, memorandum updating and clarifying the role of peer review of listing actions under the Act, we sought the expert opinions of six appropriate specialists regarding the SSA report. We received four responses. In addition, we sent the draft SSA report for review to Canadian partners, State partners, and scientists with expertise in fen ecology and bog buck moth biology, taxonomy, and conservation and received 11 responses.

I. Proposed Listing Determination

Background

The bog buck moth is a large diurnal moth native to fens (groundwater-fed wetland) in Oswego County, NY, and Ontario, Canada. A thorough review of the taxonomy, life history, and ecology of the bog buck moth is presented in the SSA report (Service 2021, pp. 6–25).

Taxonomy

The bog buck moth is a silk moth (family = Saturniidae) in the buck moth genus (Hemileuca). The bog buck moth was first identified as a variant of the maia species group within Hemileuca in 1977 by John Cryan and Robert Dirig from four sites (two populations) along the southeast shore of Lake Ontario in Oswego County, NY, but was not formally named at that time (Legge et al. 1996, p. 86; Pryor 1998, p. 126; Cryan and Dirig 2020, p. 3). Four additional sites (two populations) were discovered in 1977 in eastern Ontario (Committee on the Status of Endangered Wildlife in Canada [COSEWIC] 2009, p. 7). Multiple common names have been used since then (e.g., bogbean buckmoth, Cryan’s buckmoth, fen buck moth).

For many years, the bog buck moth’s taxonomic status has been confusing and uncertain. The bog buck moth was classified as part of the Hemileuca maia complex, which is a broadly distributed group of closely related taxa including H. maia, H. lucina, H. nevadensis, among others (Tuskes et al. 1996, p. 111). Tuskes et al. (1996, pp. 120–121) further refined the description of populations of buck moths in the Great Lakes region, including the bog buck moth, as the H. maia complex of Great Lakes Region Populuses. Kruse (1998, p. 109) included H. maia and H. nevadensis as part of the Great Lakes complex; however, using genomewide single nucleotide polymorphisms (SNPs), Dupuis et al. (2018, p. 6) and Dupuis et al. (2020, p. 3) show that H. nevadensis is restricted to the west. The Annotated Taxonomic Checklist of the Lepidoptera of North America (Pohl et al. 2016, p. 735) included the Great Lakes populations of buck moths as part of H. maia (based on Tuskes et al. 1996), pending species-level taxonomic classification.

Recently, Dupuis et al. (2018, pp. 5–7) and Dupuis et al. (2020, pp. 2–3) used SNPs and found unambiguous results supporting the conclusion that both Ontario and Oswego County, NY, populations are part of the bog buck moth lineage that is divergent from Hemileuca lucina, H. peigleri, H. slosseri, and all other H. maia. They also found clear differentiation between the group formed by the Ontario and Oswego County, NY, populations and the group formed by Wisconsin and Michigan populations (Dupuis et al. 2020, p. 3).

In 2020, Pavulaan (2020, entire) was the first to formally describe the bog buck moth as Hemileuca maia manyanethvora and stated that it may actually represent a full species. Pavulaan (2020, pp. 8–14) considered host plant use and morphology for the designation and included the Oswego County, NY, Marquette and Ozaukee County, WI, and Ontario fens as part of the range. All specimens that Pavulaan used for describing morphology were
from one location in Oswego County, NY, and he relied on host plant use discussed in Kruse (1998, entire) for inclusion of the two Wisconsin sites (Pavulana pers. comm., 2020). Subsequently, Cryan and Dirig (2020, pp. 26–31) named the bog buck moth as *H. iroquois* and included only the Oswego County, NY, and Ontario populations in the designation. Official scientific naming follows the rule of publication priority under the International Code of Zoological Nomenclature; therefore, the official name of the bog buck moth is *H. maia menyanthevora* with the junior synonym of *H. iroquois*. We conclude that the bog buck moth is a valid taxon for consideration for listing under the Act.

Based upon the strong evidence provided by Dupuis et al. (2018, entire and 2020, entire), we consider the current range of *Hemileuca maia menyanthevora* as Oswego County, NY, and Ontario, Canada. The historical range also included Jefferson County, NY (see below). We adopt this genetic evidence documented by Dupuis et al. markedly more persuasive than the host plant information that Pavulana (2020, entire; pers. comm., 2020) relied upon when he included the Wisconsin sites in his designation without specimens from those sites. The Oswego County, NY, and Ontario range is consistent with the range described when the Service originally considered the bog buck moth (*Hemileuca sp.*). as a Category 2 Candidate in 1991 (56 FR 58804, November 23, 1991). It is also consistent with the range described by NatureServe (2020, pp. 1–4), COSEWIC (2009, pp. 5, 7), and Cryan and Dirig (2020, entire).

Physiographic Setting, Life History, and Range

Bog buck moth adults have black bodies and black/gray translucent wings with wide, white wing bands and an eyespot (COSEWIC 2009, p. 5; NatureServe 2015, p. 4). Bog buck moths have forewing lengths of 22 to 36 millimeters (mm) [0.9 to 1.4 inches [in]] (Tuskes et al. 1996, p. 121; Pavulana 2020, p. 9). Males and females are generally similar in appearance with the following exceptions. Similar to all saturniids, males have highly branched, feather-like antennae with receptors that respond to female pheromones (Tuskes et al. 1996, p. 14), and females have simple antennae. Males also have a red-tipped abdomen while females do not; males are also slightly smaller than females (COSEWIC 2009, p. 5). In addition, both male and female adults are larger than other *Hemileuca maia* and have similar highly translucent wings as *H. lucina*. White wing bands are much larger than other *H. maia* (Cryan and Dirig 2020, p. 26; Pavulana 2020, p. 9).

Late instar larvae are dark with reddish orange branched urticating (stinging) spines dorsally, and a reddish-brown head capsule and prolegs (COSEWIC 2009, p. 6). Initially egg rings are light green (Cryan and Dirig 2020, p. 26) and fade to light brown or tan (Sime, pers. comm.). Mature larvae are usually predominantly black with small white dots and lack yellow markings compared to other *Hemileuca maia* (COSEWIC 2009, p. 6; NatureServe 2015, p. 4; Cryan and Dirig 2020, p. 26).

The bog buck moth is restricted to open, calcareous, low shrub fens containing large amounts of *Meynthes trifoliata* (COSEWIC 2009, p. 10) (referred to herein as bog buckbean, but also known by bogbean or buckbean). Fens are classified along a gradient that ranges from rich fens to poor fens based on their water chemistry and plant community structure. Rich fens receive more mineral-rich groundwater than poor fens, which results in higher conductivity, pH, and calcium and magnesium ion concentrations (Vitt and Chee 1990, p. 97). The sites in New York are considered medium fens (New York Natural Heritage Program [NYNHP] 2020a, p. 3). Medium fens are fed by waters that are moderately mineralized with pH values generally ranging from 4.5 to 6.5 (Olivero 2001, p. 15). Medium fens often occur as a narrow transition zone between a stream or lake and either a swamp or an upland community (Olivero 2001, p. 15). The dominant species in medium fens are usually woolly-fruit sedge (*Carex lasiocarpa*) and sweetgale (*Myrica gale*), with a variety of characteristic shrubs and herbs generally less than 5 meters (m) [16.4 feet [ft]] in height (NYNHP 2020b, pp. 5–11). Bog rosemary (*Andromeda glaucophylla*), leafgear (Chamaedaphne calyculata), cranberry (*Vaccinium macrocarpon*), spatulate-leaved sundew (*Drosera intermedia*), three-way sedge (*Dulichium arundinaceum* var. arundinaceum), and green arrow arum (*Peltandra virginica*) are characteristic only of medium fens, compared to any of the other calcareous fens found in New York (Olivero 2001, p. 14).

In Ontario, the bog buck moth is found in calcareous fens with bog buckbean. The fens are either low shrub fens or primary open fens dominated by sedges such as woolly-fruit sedge (*Carex lasiocarpa*), smooth sawgrass (*Cladium mariscoides*), and American common reed (*Phragmites australis ssp. americanus*) surrounded by conifer swamp (COSEWIC 2009, p. 10).

The life cycle of a bog buck moth is similar to other *Hemileuca* species and generally completed within 1 year (Tuskes et al. 1996, p. 103). Nonfeeding adults emerge in the fall. Males and females differ in flight patterns with males flying large, circular paths and females making short, low, direct frequent flights (Pryor 1998, p. 133). Adult males fly for longer periods as well, covering the open area of the fen for approximately 10 minutes compared to females flying short distances lasting a matter of seconds (Pryor 1998, p. 133). After mating, female buck moths lay one large cluster of eggs on sturdy stems of a variety of plant species. The eggs overwinter until the following spring when they hatch into larvae. While early instar larvae rely primarily on the host plant bog buckbean (*H. maia*), individual pupae may remain dormant until the following fall or possibly the fall after that (Cryan and Dirig 1997, p. 10; Tuskes et al. 1996, pp. 103, 114).

All populations are located within the bed of former glacial Lake Iroquois (Cryan and Dirig 2020, p. 27) and Champlain Sea (COSEWIC 2009, p. 9). The present distribution may be relict populations as a result of a postglacial expansion by *Hemileuca* from western North America, and subsequent isolation in fens and bogs as forests gradually reclaimed postglacial wetland habitats (Pryor 1998, p. 138). Glacial retreat left suitable habitat in disjointed patches (Gradish and Tonge 2011, p. 6). Based on genetic findings, bog buck moth populations may have been more historically widespread along the wetlands around Lake Ontario (Dupuis et al. 2020, p. 4).

While we do not have a full understanding of the historical bog buck moth distribution, there are records from three populations in New York and two in Ontario, Canada. Currently, there are four populations known. In Canada, the White Lake population comprises two sites or subpopulations (White Lake North and White Lake South). The Richmond Fen population comprises two sites or subpopulations (Richmond
Fen North and Richmond Fen South). In the United States, the Lakeside population occurs along the eastern shore of Lake Ontario in Oswego County, NY, and comprises five sites or subpopulations (referred to as Lakeside 1 to Lakeside 5). To the southwest, the Oswego Inland Site population occurs in Oswego County, NY, and is a single site with two fen openings with metapopulation dynamics operating at a smaller scale. The fifth historically known population located in Jefferson County, NY was identified based on specimens collected in the 1950s but the site is no longer suitable for the bog buck moth. The bog buck moth is sedentary (nonmigratory) and therefore present within suitable habitat year-round with small movements of 0.5 kilometers (km) (0.3 miles [mi]) within suitable habitat described as “common” (NatureServe 2015, p. 5). While bog buck moth populations were previously described as individuals separated by areas of unsuitable habitat greater than 2 km (1.24 mi) or areas of suitable habitat greater than 10 km (6.2 mi) with some infrequent dispersal events at slightly longer distances between unsuitable patches (NatureServe 2015, p. 5), movements are now described as “should be capable of flying several to many kilometers, but seldom leaves habitat” (NatureServe 2020, p. 5). In NY, some movement likely occurs between sites that are close together. Isolation of populations is likely increased by the short-lived adult stage (not much time for adults to fly far) (COSEWIC 2009, p. 15). In addition, they seem to have no inclination to fly long distances. Adult females that do make short flights are laden with hundreds of eggs.

Bog buck moth dispersal events were not observed by Pryor (1998, p. 138) but he suggested the potential for an adult bog buck moth to disperse with strong winds or powered flight if surrounding vegetation does not impede them. Three males were captured on sticky traps in unsuitable habitat located between the Lakeside 1 and Lakeside 2 sites in NY (Stanton 2004, p. 7) supporting some movement outside of suitable habitat but well within the 2 km (1.24 mi) discussed above. We conclude that most movements are likely to be limited to the highly localized fen habitat but that infrequent male dispersal events of a few kilometers are possible. In addition, though we would expect most wind events to primarily disperse males due to their longer localized flights, even less frequent, but possibly longer wind dispersal events of either sex may occur. Researchers have visited NY fens for many years and likely would have observed the highly conspicuous larvae on bog buckbean or adult male moths, which are readily visible due to their lengthy, localized flight pattern, had they been present.

Regulatory and Analytical Framework

Regulatory Framework

Section 4 of the Act (16 U.S.C. 1533) and its implementing regulations (50 CFR part 424) set forth the procedures for determining whether a species is an “endangered species” or a “threatened species.” The Act defines an endangered species as a species that is “in danger of extinction throughout all or a significant portion of its range,” and a threatened species as a species that is “likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.” The Act requires that we determine whether any species is an endangered species or a threatened species because of any of the following factors:

- (A) The present or threatened destruction, modification, or curtailment of its habitat or range;
- (B) Overutilization for commercial, recreational, scientific, or educational purposes;
- (C) Disease or predation;
- (D) The inadequacy of existing regulatory mechanisms; or
- (E) Other natural or manmade factors affecting its continued existence.

These factors represent broad categories of natural or human-caused actions or conditions that could have an effect on a species’ continued existence. In evaluating these actions and conditions, we consider those that may have a negative effect on individuals of the species, as well as other actions or conditions that may ameliorate any negative effects or may have positive effects.

We use the term “threat” to refer in general to actions or conditions that are known to or are reasonably likely to negatively affect individuals of a species. The term “threat” includes actions or conditions that have a direct impact on individuals (direct impacts), as well as those that affect individuals through alteration of their habitat or required resources (stresses). The term “threat” may encompass—either together or separately—the source of the action or condition or the action or condition itself.

However, the mere identification of any threat(s) does not necessarily mean that the species meets the statutory definition of an “endangered species” or a “threatened species.” In determining whether a species meets either definition, we must evaluate all identified threats by considering the expected response by the species, and the effects of the threats in light of those actions and conditions that will ameliorate the threats—on an individual, population, and species level. We evaluate each threat and its expected effects on the species, then analyze the cumulative effect of all the threats on the species as a whole. We also consider the cumulative effect of the threats in light of those actions and conditions that will have positive effects on the species, such as any existing regulatory mechanisms or conservation efforts. The Secretary determines whether the species meets the definition of an “endangered species” or a “threatened species” only after conducting this cumulative analysis and describing the expected effect on the species now and in the foreseeable future.

The Act does not define the term “foreseeable future,” which appears in the statutory definition of “threatened species.” Our implementing regulations at 50 CFR 424.11(d) set forth a framework for evaluating the foreseeable future on a case-by-case basis. The term “foreseeable future” extends only so far into the future as the Service can reasonably determine that both the future threats and the species’ responses to those threats are likely. In other words, the foreseeable future is the period of time in which we can make reliable predictions. “Reliable” does not mean “certain”; it means sufficient to provide a reasonable degree of confidence in the prediction. Thus, a prediction is reliable if it is reasonable to depend on it when making decisions. It is not always possible or necessary to define foreseeable future as a
particular number of years. Analysis of the foreseeable future uses the best scientific and commercial data available and should consider the timeframes applicable to the relevant threats and to the species’ likely responses to those threats in view of its life-history characteristics. Data that are typically relevant to assessing the species’ biological response include species-specific factors such as lifespan, reproductive rates or productivity, certain behaviors, and other demographic factors.

Analytical Framework

The SSA report documents the results of our comprehensive biological review of the best scientific and commercial data regarding the status of the species, including an assessment of the potential threats to the species. The SSA report does not represent a decision by the Service on whether the species should be proposed for listing as an endangered or threatened species under the Act. However, it does provide the scientific basis that informs our regulatory decisions, which involve the further application of standards within the Act and its implementing regulations and policies. The following is a summary of the key results and conclusions from the SSA report; the full SSA report can be found at Docket FWS–R5–ES–2021–0029 on http://www.regulations.gov.

To assess bog buck moth viability, we used the three conservation biology principles of resiliency, redundancy, and representation (Shafer and Stein 2000, pp. 306–310). Briefly, resiliency supports the ability of populations to withstand environmental and demographic stochasticity (e.g., wet or dry, warm or cold years), redundancy supports the ability of the species to withstand catastrophic events (e.g., drought, large pollution events), and representation supports the ability of the species to adapt over time to long-term changes in the environment (e.g., climate change). In general, the more resilient and redundant a species is and the more representation it has, the more likely it is to sustain populations over time, even under changing environmental conditions. Using these principles, we identified the species’ ecological requirements for survival and reproduction at the individual, population, and species levels, and described the beneficial and risk factors influencing the species’ viability.

The SSA process can be categorized into three sequential stages. During the first stage, we evaluated the individual species’ needs. The next stage involved an assessment of the historical and current condition of the species’ demographics and habitat characteristics, including an explanation of how the species arrived at its current condition. The final stage of the SSA involved making predictions about the species’ responses to positive and negative environmental and anthropogenic influences. Throughout all of these stages, we used the best available information to characterize viability as the ability of a species to sustain populations in the wild over time. We use this information to inform our regulatory decision.

Summary of Biological Status and Threats

In this discussion, we review the biological condition of the species and its resources, and the threats that influence the species’ current and future condition, in order to assess the species’ overall viability and the risks to that viability.

We note that, by using the SSA framework to guide our analysis of the scientific information documented in the SSA report, we have not only analyzed individual effects on the species, but we have also analyzed their potential cumulative effects. We incorporate the cumulative effects into our SSA analysis when we characterize the current and future condition of the species. To assess the current and future condition of the species, we undertake an iterative analysis that encompasses and incorporates the threats individually and then accumulates and evaluates the effects of all the factors that may be influencing the species, including threats and conservation efforts. Because the SSA framework considers not just the presence of the factors, but to what degree they collectively influence risk to the entire species, our assessment integrates the cumulative effects of the factors and replaces a standalone cumulative effects analysis.

Individual, Subpopulation, and Species Needs

The primary requirements for individual bog buck moths include the following: Suitable conditions that support fen ecosystems, perennial plants with bare sections of sturdy small stems above substrate near bog buckbean to provide shelter for the eggs, the presence of bog buckbean and other plants to provide shelter and food for the larvae, and appropriate flying weather of warm fall days with periods of no rain and low winds during the adult life stage. Bog buck moths require medium fens (Olivero 2001, p. 15) with a variety of shrubs and herbs, including the bog buckbean, that are generally less than 5 m (16.4 ft) in height (NYNHP 2020b, pp. 5–11). Bog buck moths also depend on shifting mosaics of early successional fen habitat created by regular disturbance (such as periodic flooding) (Cryan and Dirig 2020, p. 28). Without disturbances, as with other early successional habitats, vegetation succession will occur; however, in fens with intact hydrology, this succession occurs very slowly.

The bog buck moth is univoltine (single adult flight period). The flight period lasts 4 weeks, generally from mid-September to October (Pryor 1998, p. 134; Stanton 2000, p. 15; Schmidt, pers. comm., 2020). Adults are diurnal (fly during the day) avoiding cooler fall night temperatures (Tuskes et al. 1996, p. 12; Pryor 1998, p. 133). Bog buck moths fly when temperatures are generally above 68 degrees Fahrenheit (°F) (20 degrees Celsius [°C]) and when winds are less than 24 kilometers per hour (kmph) (15 miles per hour [mph]) (Stanton 1996, pp. 19–20, 29).

Bog buck moth larvae require bog buckbean and other host plant species. During the early instars, bog buckbean is the primary food source for the larvae; however, later instars will feed on a larger variety of host plants. Overall, bog buckbean is essential, but other foodplants may be important, particularly in later larval stages. Please refer to the SSA report for a list of documented larval host plants and oviposition plants (Service 2021, pp. 13–14).

Healthy or resilient populations are those that are able to respond to and recover from stochastic events (e.g., flooding, storms) and normal year-to-year environmental variation (e.g., temperature, rainfall). Simply said, healthy populations are those able to sustain themselves through good and bad years. For the purpose of the SSA, we defined viability as the ability of the species to sustain populations in the wild over time. The bog buck moth needs multiple healthy (resilient) populations. The more populations, and the wider the distribution of those populations (redundancy), the less likely that the species as a whole will be negatively impacted if an area of the...
species’ range is negatively affected by a catastrophic event, and the more likely that natural gene flow and ecological processes will be maintained (Wolf et al. 2015, pp. 205–206). Species that are well distributed across their historical range are less susceptible to the risk of extinction as a result of a catastrophic event than species confined to smaller areas of their historical range.

Furthermore, diverse and widespread populations of bog buck moth may contribute to the adaptive diversity (representation) of the species if redundant populations are adapting to different conditions. In considering what may be important to capture in terms of representation for the bog buck moth, we identified two primary means of defining bog buck moth diversity: genetic differences and potential adaptation to variation in climatic conditions across latitudinal gradients.

Gene flow is influenced by the degree of connectivity and landscape permeability (Lankau et al. 2011, p. 320). Gene flow may be somewhat limited among bog buck moth populations due to their rare and patchy distributions and sedentary (nonmigratory) behavior. The Inland Oswego Site population is genetically distinct from the nearest of the Lakeside populations (about 30 km [18.6 mi] away), although there is or was likely some limited migration between them (Buckner et al. 2014, pp. 510–512). In addition, while an unambiguously close relationship was found between the bog buck moth specimens from Ontario and the populations in Oswego County, NY, both of these populations formed distinct sister clusters (Dupuis et al. 2020, pp. 2–3). Maintaining populations in both Canada and New York is important to conserve this genetic diversity.

The bog buck moth has a fairly narrow distribution; however, Lake Ontario influences local climatic conditions, and, at more northern latitudes, the Canadian populations experience colder winters. In Ottawa, Canada, average monthly temperatures range from 5.4 to 21.6 °C (−14.8 to −5.8 °C) in January to 60 to 79.7 °F (15.5 to 26.5 °C) in July, and average yearly snowfall is 88 in (2.23 m). In Oswego, NY (directly on Lake Ontario), temperatures range from 18 to 30 °F (−7.8 to −1.1 °C) in January to 63 to 79 °F (17.2 to 26.1 °C) in July, an average yearly snowfall is 141 in (3.58 m). Adult males have been documented to fly 3 to 5 days earlier at the Oswego Inland Site compared to Lakeside 2 and potentially due to the climate-tempering effects of Lake Ontario on the Lakeside 2 site (Stanton 1998, p. 26). Maintaining populations across historical latitudinal and climatic gradients increases the likelihood that the species will retain the potential for adaptation over time. Local adaptation to temperature, precipitation, host plants, and community interactions have all been identified for butterflies and is anticipated for the bog buck moth (Aardema et al. 2011, pp. 295–297).

Risk Factors for the Bog Buck Moth

The primary factors currently influencing bog buck moth population health are inherent factors (e.g., narrow habitat niche) and several external factors resulting in loss or alteration of habitat or directly influencing demographic rates. As discussed above, bog buck moths are found in medium fens. Medium fens are listed as imperiled or vulnerable in New York (NYNHP 2020b, p. 2). Threats to medium fens include hydrological change, habitat alteration in the adjacent landscape, development, and recreational overuse (NYNHP 2020b, p. 3). Fens are especially sensitive to relatively small changes in hydrology (van Diggelen et al. 2006, p. 159). Additionally, several medium fens where bog buck moths occur in New York are negatively impacted by invasive species, such as purple loosestrife (Lythrum salicaria), reed grass (Phragmites australis), and buckthorn (Rhamnus spp.) (NYNHP 2020, p. 3). In Canada, the most significant threat to the bog moth is habitat degradation either due to alteration of water regime within the species’ habitat or the invasion of habitat by nonnative plant species (COSEWIC 2009, p. 18; Environment Canada 2015, p. 7). Several sources of habitat alteration identified at bog buck moth sites are discussed below. We do not fully understand the cause of declines at bog buck moth sites, and so it is likely that additional factors (e.g., predation, disease, pesticides) are important. For comprehensive discussion of the primary factors as well as these other likely stressors, please refer to the SSA report Chapter 3—Factors Influencing Viability (Service 2021, pp. 26–50).

Change in Water Levels

Water level changes can directly kill individuals (e.g., flooding of pupae) or result in changes in habitat suitability and availability. Flooding can result in reductions in suitable oviposition sites, larval food sources and shelter, or population sites. Below we will discuss water management as it pertains to the Canadian and U.S. populations.

Water Level Management—Canadian Populations

Both White Lake subpopulations are influenced by manipulation of the White Lake outlet dam in the town of White Lake (Schmidt, pers. comm., 2020), and large fluctuations may cause mortality (COSEWIC 2009, p. 18). Alteration of the water regime can be mitigated or avoided through appropriate water management policies, actions, and land stewardship techniques; however, there were no clear prescriptive actions provided (Environment Canada 2015, p. 7). The Strategy for the Bogbean Buckmoth in Ontario (Ontario Recovery Strategy) includes recovery actions to understand the specific hydrology of Richmond Fen wetlands and the White Lake wetlands and to work with stakeholders to mitigate impacts from land use change, particularly water level manipulation at White Lake (Gradish and Tonge 2011, pp. 12–13). We have no information to indicate these actions have been implemented, and Ontario’s 5-year review of the bog buck moth (OMNR 2017, pp. 11–17) does not mention anything about these specific actions. However, through regulation, Ontario formally designated “habitat” for the bog buck moth in 2014 (Environment Canada 2015, p. 9). Environment Canada then adopted the description of bog buck moth “habitat” as “critical habitat” in the Federal recovery strategy (Environment Canada 2015, p. 10). The designation includes a list of activities that alter the fen’s water regime as those likely to destroy critical habitat for the bog buck moth (Environment Canada 2015, p. 17). We will discuss more information about Ontario and Canadian laws and regulations in Conservation Measures, below.

Water Level Management—U.S. Populations

Water level management resulted in the extirpation of a Jefferson County, NY, population in the 1970s (Bonanno and White 2011, p. 9) by flooding the fen habitat and creating a freshwater marsh. The site is currently being maintained by the New York State Office of Parks, Recreation and Historic Preservation as a marsh for flood control, septic system management, and New York State-listed endangered black tern (Chlidonias niger) habitat (Bonanno, pers. comm., 2020). However, it is no longer suitable habitat for the bog bug moth.

The Lakeside population is currently influenced by water levels associated with management of Lake Ontario through regulation of the Moses-
Lake Ontario from 1860 to 1960 show a Lawrence River, recorded lake levels of the episodic changes in Great Lakes can be released (IJC 2014, p. 5). Most of are limits to the amount of water that over Lake Ontario water levels, but there supply it receives and its outflow. flows. The Lake Ontario water level changes in response to the difference between the supply it receives and its outflow. The supply is uncontrolled, and the use of the Moses-Saunders Power Dam to change outflow provides some control over Lake Ontario water levels, but there are limits to the amount of water that can be released (IJC 2014, p. 5). Most of the episodic changes in Great Lakes water levels over the past century are attributable to corresponding changes in annual precipitation (Gronewold and Stow 2014, p. 1084). Prior to the construction of the dams on the St. Lawrence River, recorded lake levels of Lake Ontario from 1860 to 1960 show a pattern of variation with highs and lows captured within each decade or so (Wilcox et al. 2008, p. 302). The historical range of monthly average water levels was more than 1.8 m (6 ft) between low and high levels, and the IJC recommended regulating within a narrow 1.2-m (4-ft) target from April to November (IJC 2014, p. 8). This has resulted in compressing the range of Lake Ontario water levels to 0.7 m (2.3 ft) from 1.5 m (5 ft) (Wilcox et al. 2008, p. 302). The IJC (2014, p. 43) found that regulation of Lake Ontario has restricted the natural fluctuation of its water levels, both in terms of reducing its extremes and year-to-year variability. The existing shoreline vegetation of the Great Lakes depends on regular fluctuation in water levels (Keddy and Reznicek 1986, p. 35). Fluctuating water levels increase the area of shoreline vegetation and the diversity of vegetation types and plant species (Keddy and Reznicek 1986, p. 35). High lake levels periodically eliminate dense-canopy emergent plants, and low lake levels allow less competitive understory species to grow (Keddy and Reznicek 1986, entire; Wilcox et al. 2008, p. 301). Stabilization of Lake Ontario water levels after the construction of the Moses-Saunders Power Dam may have subsequently increased cattail (Typha spp.) dominance (Rippee et al. 2010, p. 814). Specifically, lack of low lake levels shifted the competitive advantage to the taller cattails resulting in loss of large expanses of sedge/grass meadows (Wilcox et al. 2008, p. 316). The IJC (2014, p. 43) found that the compressed lake level range has allowed trees and shrubs to grow closer to the water, and cattails and other emergent plants that tolerate persistent flooding to expand their range up the shoreline, reducing the sedge meadow plants that occurred in between. Increased cattails have been documented at Lakeside bog buck moth subpopulations including Lakeside 3 and Lakeside 4 (Bonanno, pers. comm., 2020; Sime 2019, p. 38). These changes in vegetation from Carex spp., sweet-gale, herbs, and shrubs to cattail marsh result in overall habitat loss through permanent reductions in the amount of suitable oviposition sites, larval food sources, and pupal habitat. In addition to changes in vegetation discussed above, water levels can directly impact survival of bog buck moth in various life stages. The Lakeside population includes sites that have been described as physically “protected wetlands” located behind sandbars and connected to Lake Ontario by intermittent or indirect surface water openings or ground water (Vaccaro et al. 2009, p. 1038). Water levels in these sites are greatly influenced by precipitation and highly variable depending on their unique connection to Lake Ontario (Vaccaro et al. 2009, p. 1045). Barrier beaches along Lake Ontario restrict flow out of the wetlands, causing water levels to rise sharply in response to local precipitation events. Though flood events may be related to water level management, they are more strongly connected to precipitation events (Gronewold and Stow 2014, p. 1084) and are further discussed below in the Climate Change section. In addition to the larger scale water level management of Lake Ontario, more localized water level management may influence bog buck moth sites. Water levels may be influenced by impoundments (human or beaver) or roads that restrict flow into or out of the fen. Restriction of flow into fens results in drying of sites and increases in shrubs. Taller shrubs shade out bog buckbean, reducing optimal larval host plants. One example of localized water level influences is the impact of a road at the Lakeside 1 and Lakeside 2 sites. Historically connected, these two sites became separated due in part to the construction of a road in the mid-1950s and impoundment in an adjacent management area (Bonanno 2006, p. 8). Fen habitat contracted from 6 to 2 ha (15 to 5 ac) at the Lakeside 1 site and 32.4 to 24.7 ha (80 to 61 ac) at the Lakeside 2 site from 1998 to 2001 (Olivero 2001, p. 10). This was corroborated with personal observations by Bonanno (2014, p. 6), who found that vegetation in the Lakeside 1 site was succeeding to a black spruce-tamarack bog forest with deep sphagnum, taller shrubs, and scarce bog buckbean. At the Lakeside 2 site, succession is documented to the point where significant habitat restoration is required (Bonanno 2014, p. 5; 2015, p. 7; 2016, p. 8). Water levels on Lake Ontario have no direct effect on the Oswego Inland Site population, and we are unaware of any smaller scale water level management at this site; however, temperature, precipitation, and evaporation potential will impact hydrology (Stanton 2004, p. 11) (see Climate Change, below). Change in Vegetation Both invasive species and succession can reduce the amount of available suitable oviposition plants and/or larval host plants. Invasive species and later successional plants directly compete for space and nutrients or shade out bog buckbean. Changes in the quality or quantity of bog buckbean is a potential cause of documented declines in bog buck moths in New York (Stanton 2004, p. 11). We evaluated the relative threats posed by invasive understory species and determined that Typha spp., common reed (Phragmites australis), and glossy buckthorn (Frangula alnus), are currently the primary species that could affect population-level dynamics of the bog buck moth. Common reed is abundant across the northern hemisphere including most of the United States and the southern portions of Canada (Galowitsch et al. 1999, pp. 739–741). Native fen plants like Myrica gale are reduced with the presence of common reed (Richburg et al. 2001, p. 253). Glossy buckthorn is a shrub of Eurasian origin that is aggressive in bogs and fens. Drier portions or less frequently inundated sections of wetlands with available hummock surfaces are more readily invaded (Berg et al. 2016, p. 1370). Glossy buckthorn displaces or shades out native fen plant species (Fiedler and Landis 2012, pp. 41, 44, 51). Bog buckbean typically does not grow well in shade (Hewett 1964, p. 730); although it can be found in shaded areas of some fens (Helquist, pers. comm., 2020). Glossy buckthorn transpiration in mid-summer has been shown to lower the water table (Godwin
Fens are characterized by a very low supply of nitrogen and phosphorous (Bedford and Godwin 2003, p. 614), and many fens in New York are degraded by altered hydrology or by nitrate moving in ground water, by phosphate adsorbed to sediment in runoff, or by altered water chemistry caused by development within fen watersheds (Drexler and Bedford 2002, p. 278; Bedford and Godwin 2003, p. 617). Drexler and Bedford (2002, pp. 276–278) observed that nutrient loading of a fen in New York (not a bog buck moth site) resulted in reductions in species richness of both vascular plants and bryophytes and increases in monotypic stands of bluejoint grass (Calamagrostis canadensis), lake sedge (Carex lacustris), hair willow herb (Epilobium hirsutum), and broadleaf cattail (Typha latifolia), especially in an area adjacent to a farm field. Dense cover reduces fen biodiversity through direct space competition, or by reducing seedling growth from decreased available light and increased litter layer (Jensen and Meyer 2001, pp. 173–179).

Increased nutrient inputs have been documented at both the Lakeside and Oswego Inland Site populations (Service 2021, p. 36). The Lakeside 3 and 4 sites are adjacent to a recreational vehicle (RV) campground that may contribute to nutrient enrichment encouraging growth and size of the common reed (Phragmites australis). The Lakeside 2 site is also subject to surface water inputs from the adjacent pond, the Lakeside 1 site is surrounded by seasonal camps and an RV campground, and the Lakeside 5 site is abutted by a very large RV campground. The Oswego Inland Site has seen recent residential development along the lake shoreline.

Parasitoids

Parasitoids are small insects whose immature stages develop within or attached to their host insects. Parasitoids eventually kill their hosts as compared to parasitoids that typically feed upon hosts without killing them. Most sawflies are attacked during the larval stage, and later instar larvae often suffer heavy losses (Tuskes et al. 1996, pp. 25–27). For the bog buck moth, parasitism of egg masses has been documented; while larval parasitoids have not been directly observed, they are also believed to be the cause of mortality (COSEWIC 2009, p. 17).

Nearly all of the bog buck moth egg masses found at the Lakeside 1 site since 1996 were parasitized by the native wasp Anastatus furnissi (Burks) (Stanton 2000, p. 4) and it is plausible that the wasp was the primary mortality factor at other Lakeside subpopulations (Stanton 2000, p. 13). Wasp parasitism of egg masses has also been documented at the Oswego Inland Site (Sime 2019, p. 15). The parasitism rates do not appear to be density-dependent as parasitism levels have been consistent at the Lakeside and Oswego Inland sites at 25 to 30 percent of egg clusters affected/year since 2009, while bog buck moth populations have undergone dramatic fluctuations in that time period (Sime 2019, p. 15).

Larval parasitoids are common in Hymenoptera species (Tuskes et al. 1996, p. 103). Parasitoids can include native and nonnative species, such as the native ichneumonid wasp Hyposter fugitivus (Say) and tachinid fly Leschenaultia fulvipes (Bigot), and the introduced tachinid fly Compilura concinna (Meigen) for the control of gypsy moths (Lymantria dispar).

Although C. concinna is likely present at the Canadian sites, no evidence of parasitism of bog buck moth has been reported (Wood, pers. comm., 2020, as cited in COSEWIC 2009, p. 14). Parasitism is assumed to be occurring at the Canadian populations (COSEWIC 2009, p. 17). Similarly, while not documented at the bog buck moth sites in the United States, we find the New York populations are likely to be susceptible to larval parasitism from the tachinid fly and other parasitoids, and observed boom/bust cycles may be related to such parasitism. Bonanno (2016, p. 5) reported the 2016 crash of adult bog buck moths at the Oswego Inland Site after abundant larvae of all sizes were observed in May and June and suggested looking further into larval or pupal parasitoids as a possible cause. If bog buck moths are not killed by predators (e.g., small mammals and other invertebrates) or parasitoids, larval behavior may still be affected by the presence of predators or parasitoids. Early instar larvae tend to stay together and defend themselves while late instar larvae disperse, leading to increased subdivision of clusters (Cornell et al. 1987, p. 387). At sites with higher predator or parasitoid densities, buck moth larvae likely experience slower growth rates, prolonged development, and reduced body mass (Stamp and Bowers 1990, p. 1037) because they would be forced to forage closer to the center of plants where it is cooler and where older, lower quality leaves are present.

Climate Change

While there are many possible effects to bog buck moths from climate change into the future, here we focus on the effects to bog buck moths from observed
changes in precipitation and temperature to date.

Lake Ontario water levels naturally fluctuate within and among years; however, record high water levels have recently occurred, resulting in impacts to bog buck moth sites. Between 1951 and 2017, the total precipitation with the Great Lakes Basin increased by approximately 14 percent with heavy precipitation events increasing by 35 percent (Great Lakes Integrated Sciences and Assessments Program 2019, entire). After 15 years of below-average water levels on Lake Superior and Lake Michigan-Huron, water levels of the upper Great Lakes started rising in 2013 and have been well above-average for several years (Board 2020, p. 7). With all of the Great Lakes water levels above or near record-highs, the increase represented an unprecedented volume of water in the Great Lakes system funneled into Lake Ontario and out the St. Lawrence River (Board 2020, p. 7) resulting in the Lakeside population fens being vulnerable to flooding for an extended period of time. Flooding that negatively impacts bog buck moths can be described as longer duration flooding, as long-term flooding of bog buck moth fens submerges vegetation and makes the site unsuitable for most life stages and may directly kill individuals. In contrast, periodic flooding that is shorter in duration helps maintain habitat suitability.

Furthermore, bog buck moth eggs can tolerate short-term submersion but are not viable after long-term flooding events (Suriano et al. 2019, p. 34).

Two high-water events across the entire Great Lakes basin caused by above-normal precipitation (January to May 2017 and November 2018 through May 2019) compounded the already high-water levels in the Great Lakes basin (Board 2020, pp. 6–9). These events resulted in long-term submersion of bog buck moth eggs and subsequent crashes in adult flights at Lakeside 5. In addition to changes in water levels, climate change has also brought about changes in temperature. The Ontario Ministry of the Environment (2011, p. 1) reported the average temperature in Ontario has gone up by as much as 2.5 °F (1.4 °C) since 1948. Similarly, between 1951 and 2017, the average annual temperature in the Great Lakes Region has increased by 2.3 °F (1.3 °C) (GLISA 2019, entire). We have no detailed studies to assess whether observed declines in bog buck moth counts of the U.S. populations are related to these increased annual temperatures. However, seasonal changes in temperature can influence the form of precipitation and snowpack in winter and shifts in phenology. For example, the timing of fall flights may be shifting to later in September. Bog buck moth monitoring windows have been September 12 to 26 at the Oswego Inland Site and September 18 to October 1 at the Lakeside sites since surveys began, and in recent years there has been little or no activity near the beginning of the survey window (Bonanno 2019, pp. 1–2).

Throughout the Great Lakes Basin, average winter minimum and maximum temperatures increased from 1960 to 2009 by 3.24 and 1.98 °F (1.8 and 1.1 °C), respectively (Suriano et al. 2019, pp. 6–8). Increased winter temperatures are associated with decreases in Great Lakes ice cover and increases in winter precipitation occurring as rain. Increased temperatures may also reduce snowpack, impacting bog buck moth food sources. During the first half of the 20th century, the Great Lakes basin experienced an increase in snowfall; however, snowfall has declined through the latter half of the 20th and early 21st centuries (Baijnath-Rodino et al. 2018, p. 3947). Similarly, Suriano et al. (2019, p. 4) found a reduction in snow depth in the Great Lakes Basin of approximately 25 percent from 1960 to 2009. Trends during this timeframe are variable by subbasin, and there were no significant trends for the Lake Ontario subbasin (Suriano et al. 2019, p. 5). At a finer scale (1 degree latitude by 1 degree longitude grids), there were also no significant changes observed for snow depth or snowfall for the grid along Lake Ontario that includes the bog buck moth sites, but there was a significant increase of the number of ablation events (i.e., snow mass loss from melt, sublimation, or evaporation) (Suriano et al. 2019, pp. 6–7). These events are associated with rapid snow melt and often lead to localized flooding.

Snowpack reductions lead to longer periods of frost, earlier disappearance of standing water, deeper frost levels and reduced bog buckbean biomass (Benoy et al. 2007, pp. 505–508). Reduced snowpack will negatively affect bog buck moth larval growth and survival. Reduced snowpack can also impact bog buck moth directly; however, limited research is available on the impacts to bog buck moth associated with the presence, depth, and duration of winter snow. The presence of a consistent seasonal snowpack can prevent freeze-thaw cycles. While bog buck moths overwinter in the egg stage, which is less vulnerable to freezing than other life stages, they may also periodically overwinter in the pupal stage, which would be vulnerable to these cycles. Their egg-clustering habit may decrease the amount of egg surface exposed to ambient conditions and reduce the possibility of desiccation (Stamp 1980, p. 369). However, eggs that are not covered by snowpack are exposed to increased risk of predation.

Increased temperatures in winter and early spring may lead to earlier egg hatch. As temperatures have increased, many insects have been emerging earlier (temperature-induced emergence) (Patterson et al. 2020, p. 2), resulting in phenological mismatch with host plants. For example, Karner blue butterfly (Lycaeides melissa samuelis) larvae have been known to hatch earlier than its host plant, wild blue lupine (Lupinus perennis), after unseasonably warm late-winter temperatures (Patterson et al. 2020, p. 6). Similar to the Karner blue butterfly, bog buck moth early instar larvae rely on specific host plants and are at greater risk of impacts from phenological mismatch than species with wide host plant usage. Earlier spring hatch followed by subsequent spring freezes also increases the risk of mortality of early instar larvae. Overall, interacting changes in temperature and precipitation are highly influential in terms of flooding or drying out bog buck moth sites. There may be additional compounding effects from changes in temperature associated with shifts in phenology or reduced snowpack, but we lack sufficient information on those potential relationships.

Conservation Measures

New York Populations

The bog buck moth was listed as endangered by the State of New York in 1999 and is protected by Environmental Conservation Law section 11–0535 and the New York Code of Rules and Regulations (6 NYCRR Part 182). An incidental take permit is required for any proposed project that may result in a take of bog buck moths, including, but not limited to, actions that may kill or harm individual animals or result in the adverse modification, degradation, or destruction of habitat occupied by the bog buck moth. Additionally, the bog buck moth is a Species of Greatest Conservation Need in the NYSDEC’s Comprehensive Wildlife Conservation Strategy (NYSDEC 2005, Appendix 5, pp. 14–17; NYSDEC 2015, not numbered). NYSDEC has a draft recovery plan for the bog buck moth (Bonanno and White 2011, entire) that has not been finalized.

All known populations are in conservation ownership and are
protected from effects from human-induced habitat destruction or alteration of the wetland itself (e.g., wetland fill associated with roads or development). Habitat management has been conducted at a few of these sites, but invasive plants and/or vegetation succession have reduced the amount of available habitat at most sites and remain an ongoing threat. The State of New York provides protection for wetlands greater than 12.4 acres in size or of unusual local importance.

Regulated activities within the wetland or adjacent buffer require permits from the NYSDEC. In addition, in accordance with section 404 of the Clean Water Act, the U.S. Army Corps of Engineers has the authority to regulate discharge of dredged or fill material into waters of the United States, including wetlands. In New York, placing fill into bogs and fens is not authorized under the Nationwide Permit Program.

Canadian Populations

The bog buck moth was recommended for listing as endangered by COSEWIC in 2009 (COSEWIC 2009, entire), listed as endangered under the Ontario Endangered Species Act in 2010, and listed as endangered on Schedule 1 of the Species at Risk Act (SARA) in 2012. These listings provided the bog buck moth protection from being killed, harmed, harassed, captured, or taken in Canada.

The Ontario Ministry of Natural Resources and Forestry (Ministry) published a recovery strategy for the bog buck moth on December 7, 2011 (Gradish and Tonge 2011, entire). Major actions identified in the plan include: improve monitoring standards to the bog buck moth, assess the risk posed by invasive species, and evaluate the hydrology of the species’ habitat. In 2017, the Ministry published a 5-year review of progress towards the protection and recovery of the bog buck moth (Ministry 2017, pp. 11–17). Initial progress has been made towards assessing the risk posed to the bog buck moth by invasive species and, where appropriate, implementing invasive species control within and adjacent to occupied fen ecosystems.

Bog buck moth habitat has generally been afforded protection from authorized damage or destruction in Canada since the species was listed in Ontario in 2010. Bog buck moth habitat is further protected through Ontario habitat regulation and Federal critical habitat protection. Section 41(1)(c) of SARA requires that recovery strategies include an identification of the species’ “critical habitat,” to the extent possible, as examples of activities that are likely to result in its destruction (Environment Canada 2015, p. 9). Environment Canada (2015, p. 10) adopted the description of the buck moth “habitat” under section 24.1.1.1 of Ontario Regulation 242/08 as “critical habitat” in the Federal recovery strategy. The area defined under Ontario’s habitat regulation contains the biophysical attributes required by the buck moth to carry out its life processes. To meet specific requirements of SARA, the biophysical attributes of critical habitat were further detailed in the Federal strategy (Environment Canada 2015, p. 11). However, under SARA, specific requirements and processes are not set out regarding the finalization of protection of critical habitat and whether the prohibition against destruction of critical habitat is extended to any non-Federal land. Protection of critical habitat under SARA was to be assessed following publication of the final bog buck moth Federal recovery strategy (Environment Canada 2015, p. 10). There is no indication that this assessment has occurred to date.

Current Condition

Similar to other Hemileuca species, bog buck moth populations (and subpopulations) experience boom and bust cycles. Table 1 and Figure 1 summarize male peak flight counts at four U.S. subpopulations. Three of the subpopulations have crashed and not recovered.

BILLING CODE 4333-15-P
Table 1. Bog buck moth fall flight information for the Oswego Inland Site and three Lakeside subpopulations, NY, 22-year record. Data are site mean of 5-minute counts on the peak date. Zero means a search was made, no moths seen. Empty cells indicate no data were collected at that site that year. Cells with counts higher than 100 are highlighted. Data from Bonanno (2018, p. 4; 2019, p. 4) and Bonanno and Rosenbaum 2020, p. 2).

<table>
<thead>
<tr>
<th>Date</th>
<th>Oswego Inland Site</th>
<th>Lakeside 5</th>
<th>Lakeside 3</th>
<th>Lakeside 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>171.3</td>
<td></td>
<td></td>
<td>242.4</td>
</tr>
<tr>
<td>1999</td>
<td>49.6</td>
<td>10.6</td>
<td>109.4</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>7.1</td>
<td>14.8</td>
<td>26.8</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>16.4</td>
<td>18.6</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>37.1</td>
<td>3.3</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>46</td>
<td>22.5</td>
<td>6.3</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>153.2</td>
<td>64.6</td>
<td>21.2</td>
<td>20.2</td>
</tr>
<tr>
<td>2005</td>
<td>87.3</td>
<td>51.1</td>
<td>14.4</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>81.9</td>
<td>126.8</td>
<td>26.3</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>93.7</td>
<td>65.9</td>
<td>212.0</td>
<td>50.0</td>
</tr>
<tr>
<td>2008</td>
<td>63</td>
<td>23.0</td>
<td>5.8</td>
<td>14.2</td>
</tr>
<tr>
<td>2009</td>
<td>70</td>
<td>48.7</td>
<td>0.7</td>
<td>14.3</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td>10.0</td>
</tr>
<tr>
<td>2011</td>
<td>20.2</td>
<td></td>
<td>0.1</td>
<td>9.4</td>
</tr>
<tr>
<td>2012</td>
<td>18.9</td>
<td>46.0</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2013</td>
<td>21.4</td>
<td>1.0</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>126.5</td>
<td>3.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>98.7</td>
<td>6.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>5.0</td>
<td>27.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>0.7</td>
<td>53.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>0</td>
<td>30.7</td>
<td>>0 (2 total moths)</td>
<td>0</td>
</tr>
<tr>
<td>2019</td>
<td>0</td>
<td>44.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In Canada, the status of many of the populations is unknown due to a lack of surveys. Of the four sites found in Canada, only two were recently surveyed. The subpopulation at Richmond Fen South was visited in 2019 where an estimated minimum of 1,500 early instar larvae were found in a small portion of core habitat. Another site visit to the same location in early July 2020 documented the presence of hundreds of mid-instar larvae. At White Lake North, more than 100 adult moths were observed in mid-September 2020. Prior to 2020, larval surveys were conducted, and larvae were last observed in mid-September 2020. Prior to 2020, larval surveys were conducted, and larvae were last observed in 2016, with no surveys in 2017, and larvae were absent in 2018 and 2019. The status of the two other subpopulations in Canada (Richmond Fen North and White Lake South) is unknown because no surveys have been conducted at those sites.

It is unlikely that there are other bog buck moth populations besides the ones mentioned above. Fairly extensive but unsuccessful searches for bog buck moths have been conducted at other potentially suitable wetland habitat in Ontario, and no new sites have been found (COSEWIC 2009, pp. 9–10). COSEWIC (2009, p. 10) found that given the degree of interest by naturalists in these natural areas and the diurnal habits of this large distinctive species, the probability of undiscovered Ontario buck moth populations is low.

The circumstances are similar in New York. Cryan and Dirig (2020, pp. 4–5) described several years of exploring the bed of former glacial Lake Iroquois and its tributaries and outlets, and while they found some fens with bog buckbean, they found no additional sites with bog buck moth. In addition, researchers had visited New York fens for many years and likely would have observed the highly conspicuous bog buckbean larvae or flying adult males had they been present. Bonanno and White (2011, p. 10) describe multiple visitations to possible habitat by NYNHP and researchers familiar with the bog buck moth without locating any individuals.

We evaluated the bog buck moth current condition by assessing whether there were multiple resilient populations spread across its geographical extent to maintain its ecological and genetic diversity and withstand catastrophic events (table 2). Information to date suggests that bog buck moths are genetically structured across their range and we believe the breadth of adaptive diversity can be captured by two representative units, Canadian and United States.

Table 2—Ecological Requirements for Species-Level Viability

<table>
<thead>
<tr>
<th>3Rs</th>
<th>Requisites</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resiliency (able to withstand stochastic events).</td>
<td>Healthy populations</td>
<td>Populations with:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Both sexes present.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sufficient survival of all life stages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sufficient number of bog buck moths to survive bust portion of boom and bust cycles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Stable to increasing trend over last 10 years (10 generations).</td>
</tr>
</tbody>
</table>
The Lakeside population has and one is in poor condition (table 4). 1970s, one is now presumed extirpated, U.S. Representative Unit, one the bog buck moth populations in the mentioned above, we find that for all recent presumed to be extirpated. Lakeside 5 site remains extant. Lastly, Lakeside subpopulations, only the habitat (Bonanno, pers. obs.). Of the management for park flooding control, ago by beavers, then maintained by marsh, having been impounded decades Jefferson County site was converted to a marsh, having been impounded decades ago by beavers, then maintained by septic management, and black tern habitat (Bonanno, pers. obs.). Of the Lakeside subpopulations, only the Lakeside 5 site remains extant. Lastly, the Oswego Inland Site population was recently presumed to be extirpated.

Using our ranking methods mentioned above, we find that for all the bog buck moth populations in the U.S. Representative Unit, one population has been extirpated since the 1970s, one is now presumed extirpated, and one is in poor condition (table 4). The Lakeside population has experienced multiple sources of habitat loss and degradation and remaining buck moths have faced high flood years. While these may or may not be the true cause of declines and site-level extirpations, they likely contributed to them. The cause of decline and the bog buck moth’s inability to rebound at the Oswego Inland Site is unclear as Richmond Fen South had hundreds of mid-instar larvae in early July 2020 with ample suitable habitat. Richmond Fen North has not had any recent moth or larval surveys, but observations during a site visit in 2015 suggested that the habitat remains in good condition. At White Lake North, more than 100 bog buckmoth adults were observed in 2016 and none seen in 2018 or 2019. There is no information on White Lake South. Although both populations have been described as unknown/likely good, invasive species such as cattails, common reed, and glossy buckthorn have been identified in the habitat and are likely to have a negative effect and reduce the resiliency

<table>
<thead>
<tr>
<th>Condition</th>
<th>Sufficient number</th>
<th>Connectivity</th>
<th>Suitable habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>Unknown</td>
<td>Not applicable</td>
<td>Unknown, Habitat is completely unsuitable due to alteration or loss.</td>
</tr>
<tr>
<td>Extirpated</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Insufficient suitable habitat for any of the life stages:</td>
</tr>
<tr>
<td>Presumed Extirpated</td>
<td>No moths or any other life stage were observed during multiple subsequent surveys.</td>
<td>Not applicable</td>
<td>Insufficient bog buckbean (<4% areal coverage).</td>
</tr>
<tr>
<td>Poor</td>
<td>Negative trend over last 10 years</td>
<td>No subpopulations or if subpopulations are present each subpopulation did not have at least one >0 count within the last 5 years.</td>
<td>Relatively limited oviposition sites.</td>
</tr>
<tr>
<td>Good</td>
<td>Neutral or positive trend over last 10 years</td>
<td>Multiple subpopulations and >0 count for each subpopulation within the last 5 years.</td>
<td>Suitable habitat for all life stages:</td>
</tr>
</tbody>
</table>

As discussed above, we are aware of five bog buck moth populations, two in Canada and three in New York. We are unaware of any changes to the distribution in Canada; however, we have information from only two of the four subpopulations. In New York, the Jefferson County site was converted to a marsh, having been impounded decades ago by beavers, then maintained by management for park flooding control, septic management, and black tern habitat (Bonanno, pers. obs.). Of the Lakeside subpopulations, only the Lakeside 5 site remains extant. Lastly, the Oswego Inland Site population was recently presumed to be extirpated.

Using our ranking methods mentioned above, we find that for all the bog buck moth populations in the U.S. Representative Unit, one population has been extirpated since the 1970s, one is now presumed extirpated, and one is in poor condition (table 4). The Lakeside population has experienced multiple sources of habitat loss and degradation and remaining buck moths have faced high flood years. While these may or may not be the true cause of declines and site-level extirpations, they likely contributed to them. The cause of decline and the bog buck moth’s inability to rebound at the Oswego Inland Site is unclear as flooding has not been a concern at this site and seemingly suitable habitat remains. Similar declines at sites with apparently suitable habitat have been documented for another endangered fen species, the Poweshiek skipperling (Oarisma poweshiek), suggesting that other factors (e.g., contaminants, climate change, disease, and low levels of genetic diversity) may be driving the current distribution and losses (Pogue et al. 2019, pp. 383–386).

In the Canadian Representative Unit, both populations are in unknown/likely good condition. This assessment has a high degree of uncertainty given that it is based on current knowledge from half of the associated Canadian Representative Unit subpopulations (one out of the two subpopulations for each population). Most recently, Richmond Fen South had hundreds of mid-instar larvae in early July 2020 with ample suitable habitat. Richmond Fen North has not had any recent moth or larval surveys, but observations during a site visit in 2015 suggested that the habitat remains in good condition. At White Lake North, more than 100 bog buckmoth adults were observed in September 2020. Prior to that, surveys were based on larvae, with larvae last observed in 2016 and none seen in 2018 or 2019. There is no information on White Lake South. Although both populations have been described as unknown/likely good, invasive species such as cattails, common reed, and glossy buckthorn have been identified in the habitat and are likely to have a negative effect and reduce the resiliency
of these populations (COSEWIC 2009, p. 18; Gradish and Tonge 2011, pp. 6–7; Environment Canada 2015, p. 7).

Overall, three subpopulations (White Lake North, Richmond Fen South, and Lakeside 5) associated with three separate populations are known to have remaining bog buck moths. While some genetic diversity remains through the current existence of at least one subpopulation within each of the representative units, there is no redundancy of healthy populations in the U.S. Representative Unit, and there is uncertainty about the status of the Canadian Representative Unit.

TABLE 4—SUMMARY OF BOG BUCK MOTH CURRENT CONDITION

<table>
<thead>
<tr>
<th>Resiliency (able to withstand stochastic events).</th>
<th>Requisites</th>
<th>Metric</th>
<th>Current condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resilient to ...</td>
<td>Healthy populations</td>
<td>Populations with:</td>
<td>Poor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Both sexes present</td>
<td>Of the 5 historically known populations:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sufficient survival of all life stages</td>
<td>1 extirpated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sufficient number of bog buck moths to survive bust portion of boom and bust cycles.</td>
<td>1 presumed extirpated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Stable to increasing trend over last 10 years (10 generations).</td>
<td>1 poor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Multiple occupied suitable habitat patches within metapopulation.</td>
<td>2 unknown/likely good.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sufficient habitat size</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sufficient habitat quality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Intact hydrology and ecological processes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Healthy populations distributed across areas of unique adaptive diversity (e.g., across latitudinal gradients) with sufficient connectivity for periodic genetic exchange.</td>
<td></td>
</tr>
<tr>
<td>Representation (to maintain evolutionary capacity).</td>
<td>Maintain adaptive diversity</td>
<td>Healthy populations distributed across areas of unique adaptive diversity</td>
<td>Poor.</td>
</tr>
<tr>
<td>Redundancy (to withstand catastrophic events).</td>
<td>Sufficient distribution of healthy populations.</td>
<td>Adequate number of healthy populations to buffer against catastrophic losses of adaptive diversity.</td>
<td>Poor.</td>
</tr>
</tbody>
</table>

Future Condition

As part of the SSA, we developed two future condition scenarios to capture the range of uncertainties regarding future threats and the projected responses by the bog buck moth. Our scenarios assumed increased winter and spring precipitation, increased annual temperatures, and either continuation or increases in invasive plant species and succession. Because we determined that the current condition of the bog buck moth was consistent with an endangered species (see Determination section, below), we are not presenting the results of the future scenarios in this proposed rule; however, under both scenarios the future condition is projected to worsen. Please refer to the SSA report (Service 2021, pp. 67–83) for the full analysis of future scenarios.

Determination of Bog Buck Moth’s Status

Section 4 of the Act (16 U.S.C. 1533) and its implementing regulations (50 CFR part 424) set forth the procedures for determining whether a species meets the definition of an endangered species or a threatened species. The Act defines an endangered species as a species “in danger of extinction throughout all or a significant portion of its range,” and a threatened species as a species “likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.” The Act requires that we determine whether a species meets the definition of endangered species or threatened species because of any of the following factors: (A) The present or threatened destruction, modification, or curtailment of its habitat or range; (B) Overutilization for commercial, recreational, scientific, or educational purposes; (C) Disease or predation; (D) The inadequacy of existing regulatory mechanisms; or (E) Other natural or manmade factors affecting its continued existence.

Status Throughout All of Its Range

After evaluating threats to the species and assessing the cumulative effect of the threats under the Act’s section 4(a)(1) factors, we have determined that the bog buck moth is at risk of extinction now throughout its range due to a combination of factors. Bog buck moth populations undergo boom and bust cycles and are highly vulnerable to stochastic events or threats during the bust phase (Factor E). All populations are isolated from one another and cannot repopulate extirpated sites (Factor E). We find that past and ongoing stressors, including habitat alteration due to water level management, vegetative succession and invasive plant species (Factor A), and death of individuals due to flooding (Factor E) have caused and are highly likely to continue to cause a decline in the species’ viability through reduction of resilience, redundancy, and representation to such a degree that the species is particularly vulnerable to extinction presently and is highly likely to become more vulnerable to extinction. We do not fully understand the cause of declines at bog buck moth sites, and so it is likely that additional factors are important such as inherent factors (e.g., narrow habitat niche) (Factor E), parasitoids (Factor E), predation (Factor C), disease (Factor C), and pesticides (Factor E).

Of the three historical U.S. populations, two have been extirpated or presumed extirpated. The Jefferson County population was extirpated due to habitat conversion in the 1970s. The reason for the extirpation of the Inland Oswego County Site population is unclear, as the habitat still appears suitable. For the remaining U.S. population, the Lakeside population, the overall condition is poor with four of the five sites (Lakeside 1–4) presumed extirpated. Lakeside 5 is the last site with a confirmed moth...
that provided the Service does not undertake an analysis of significant portions of a species' range if the species warrants listing as threatened throughout all of its range.

Determination of Status

Our review of the best available scientific and commercial information indicates that the bog buck moth meets the definition of an endangered species. Therefore, we propose to list the bog buck moth as an endangered species in accordance with sections 3(6) and 4(a)(1) of the Act.

Available Conservation Measures

Conservation measures provided to species listed as endangered or threatened species under the Act include recognition, recovery actions, requirements for Federal protection, and prohibitions against certain practices. Recognition through listing results in public awareness and conservation by Federal, State, Tribal, and local agencies, private organizations, and individuals. The Act encourages cooperation with the States and other countries and calls for recovery actions to be carried out for listed species. The protection required by Federal agencies and the prohibitions against certain activities are discussed, in part, below.

The primary purpose of the Act is the conservation of endangered and threatened species and the ecosystems upon which they depend. The ultimate goal of such conservation efforts is the recovery of these listed species, so that they no longer need the protective measures of the Act. Section 4(f) of the Act calls for the Service to develop and implement recovery plans for the conservation of endangered and threatened species. The recovery planning process involves the identification of actions that are necessary to halt or reverse the species' decline by addressing the threats to its survival and recovery. The goal of this process is to restore listed species to a point where they are secure, self-sustaining, and functioning components of their ecosystems.

Recovery planning consists of preparing draft and final recovery plans, beginning with the development of a recovery outline, and making it available to the public within 30 days of a final listing determination. The recovery outline guides the immediate implementation of urgent recovery actions and describes the process to be used to develop a recovery plan. Revisions of the plan may be done to address new threats as they become known to the species, as new substantive information becomes available. The recovery plan also identifies recovery criteria for review of when a species may be ready for reclassification from endangered to threatened ("downlisting") or removal from protected status ("delisting"), and methods for monitoring recovery progress. Recovery plans also establish a framework for agencies to coordinate their recovery efforts and provide estimates of the cost of implementing recovery tasks. Recovery teams (composed of species experts, Federal and State agencies, nongovernmental organizations, and stakeholders) are often established to develop recovery plans. When completed, the recovery outline, draft recovery plan, and the final recovery plan will be available on our website (http://www.fws.gov/endangered), or from our New York Field Office (see FOR FURTHER INFORMATION CONTACT).

Implementation of recovery actions generally requires the participation of a broad range of partners, including other Federal agencies, States, Tribes, nongovernmental organizations, businesses, and private landowners. Examples of recovery actions include habitat restoration (e.g., restoration of native vegetation), research, captive propagation and reintroduction, and outreach and education. The recovery of many listed species cannot be accomplished solely on Federal lands because their range may occur primarily or solely on non-Federal lands. To achieve recovery of these species requires cooperative conservation efforts on private, State, and Tribal lands. Examples of the types of recovery actions available for recovery actions will be available from a variety of sources, including Federal budgets, State programs, and cost-share grants for non-Federal landowners, the academic community, and nongovernmental organizations. In addition, pursuant to section 6 of the Act, the State of New York would be eligible for Federal funds to implement management actions that promote the protection or recovery of the bog buck moth. Section 6(a) of the Act (16 U.S.C. 1537(a)) authorizes the provision of limited financial assistance for the development and management of programs that the Secretary of the Interior determines to be necessary or useful for the conservation of endangered or threatened species in foreign countries. Sections 8(b) and 8(c) of the Act (16 U.S.C. 1537(b) and (c)) also authorize the Secretary to encourage conservation programs for listed species found outside the US, and to provide assistance for such programs, in the form of personnel and the training of personnel. Information on our grants programs that are available to
aid species recovery can be found at:
http://www.fws.gov/grants.

Although the bog buck moth is only
proposed for listing under the Act at
this time, please let us know if you are
interested in participating in recovery
efforts for this species. Additionally, we
invite you to submit any new
information on this species whenever it
becomes available and any information
you may have for recovery planning
(see FOR FURTHER INFORMATION
CONTACT).

Section 7(a) of the Act requires
Federal agencies to evaluate their
actions with respect to any species that
is proposed or listed as an endangered
or threatened species with and respect
to its critical habitat, if any is
designated. Regulations implementing
this interagency cooperation provision
of the Act are codified at 50 CFR part
402. Section 7(a)(4) of the Act requires
Federal agencies to confer with the
Service on any action that is likely to
jeopardize the continued existence of a
species proposed for listing or result in
destruction or adverse modification of
proposed critical habitat. If a species is
listed subsequently, section 7(a)(2) of
the Act requires Federal agencies to
ensure that activities they authorize,
fund, or carry out are not likely to
jeopardize the continued existence of
the species or destroy or adversely
modify its critical habitat. If a Federal
action may affect a listed species or its
critical habitat, the responsible Federal
agency must enter into consultation
with the Service.

The Act and its implementing
regulations set forth a series of general
prohibitions and exceptions that apply
to endangered wildlife. The prohibitions
of section 9(a)(1) of the Act, codified at
50 CFR 17.21, make it illegal for any
person subject to the jurisdiction of the
United States to take (which includes
harass, harm, pursue, hunt, shoot,
wound, kill, trap, capture, or collect; or
to attempt any of these) endangered
wildlife within the United States or on
the high seas. In addition, it is unlawful
to import; export; deliver, receive, carry,
transport, or ship in interstate or foreign
commerce in the course of commercial
activity; or sell or offer for sale in
interstate or foreign commerce any
species listed as an endangered species.
It is also illegal to possess, sell, deliver,
carry, transport, or ship any such
wildlife that has been taken illegally.

Certain exceptions apply to employees
of the Service, the National Marine
Fisheries Service, other Federal land
management agencies, and State
conservation agencies. Federal
agency actions that may
require conference or consultation or
both as described in the preceding
paragraph include management and any
other landscape-altering activities on
lands near bog buck moth
subpopulations.

We may issue permits to carry out
otherwise prohibited activities
involving endangered wildlife under
certain circumstances. Regulations
governing permits are codified at 50
CFR 17.22. With regard to endangered
wildlife, a permit may be issued for the
following purposes: for scientific
purposes, to enhance the propagation or
 survival of the species, and for
incidental take in connection with
otherwise lawful activities. The statute
also contains certain exemptions from
the prohibitions, which are found in
sections 9 and 10 of the Act.

It is our policy, as published in the
Federal Register on July 1, 1994 (59 FR
34272), to identify to the maximum
extent practicable at the time a species
is listed, those activities that would or
would not constitute a violation of
section 9 of the Act. The intent of this
policy is to increase public awareness of
the effect of a proposed listing on
proposed and ongoing activities within
the range of the species proposed for
listing. Based on the best available
information, the following actions are
unlikely to result in a violation of
section 9, if these activities are carried
out in accordance with existing
regulations and permit requirements;
this list is not comprehensive: Normal
recreational hunting, fishing, or boating
activities that are carried out in
accordance with all existing hunting,
fish, and boating regulations, and
following reasonable practices and
standards. Based on the best available
information, the following activities
may potentially result in a violation of
section 9 of the Act if they are not
authorized in accordance with
applicable law; this list is not
comprehensive:

(1) Unauthorized collecting, handling,
possessing, selling, delivering, carrying,
or transporting of the bog buck moth,
including import or export across State
lines and international boundaries,
except for properly documented antique
 specimens of the taxon at least 100 years
old, as defined by section 10(h)(1) of the
Act;

(2) Unauthorized modification,
removal, or destruction of the wetland
vegetation, soils, or hydrology in which
the bog buck moth is known to occur;

(3) Unauthorized discharge of
chemicals or fill material into any
wetlands in which the bog buck moth is
known to occur; and

(4) Unauthorized release of biological
control agents that attack any life stage
of the bog buck moth, including
parasitoids, herbicides, pesticides, or
other chemicals in habitats in which the
bog buck moth is known to occur.

Questions regarding whether specific
activities would constitute a violation of
section 9 of the Act should be directed
to the New York Ecological Services
Field Office (see FOR FURTHER
INFORMATION CONTACT).

III. Critical Habitat

Background

Critical habitat is defined in section 3
of the Act as:

(1) The specific areas within the
geographical area occupied by the
species, at the time it is listed in
accordance with the Act, on which are
found those physical or biological
features

(a) Essential to the conservation of the
species, and

(b) Which may require special
management considerations or
protection; and

(2) Specific areas outside the
geographical area occupied by the
species at the time it is listed, upon
a determination that such areas are
essential for the conservation of the
species.

Our regulations at 50 CFR 424.02
define the geographical area occupied
by the species as an area that may
generally be delineated around species’
ocurrences, as determined by the
Secretary (i.e., range). Such areas may
include those areas used throughout all
or part of the species’ life cycle, even if
not used on a regular basis (e.g.,
migratory corridors, seasonal habitats,
and habitats used periodically, but not
solely by vagrant individuals).

Additionally, our regulations at 50 CFR
424.02 define the word “habitat” as
follows: “For the purposes of
designating critical habitat only, habitat
is the abiotic and biotic setting that
currently or periodically contains the
resources and conditions necessary to
support one or more life processes of a
species.”

Conservation, as defined under
section 3 of the Act, means to use and
the use of all methods and procedures
that are necessary to bring an
endangered or threatened species to the
point at which the measures provided
pursuant to the Act are no longer
necessary. Such methods and
procedures include, but are not limited
to, all activities associated with
scientific resources management such as
research, census, law enforcement,
habitat acquisition and maintenance,
propagation, live trapping, and transplantation, and, in the extraordinary case where population pressures within a given ecosystem cannot be otherwise relieved, may include regulated taking.

Critical habitat receives protection under section 7 of the Act through the requirement that Federal agencies ensure, in consultation with the Service, that any action they authorize, fund, or carry out is not likely to result in the destruction or adverse modification of critical habitat. The designation of critical habitat does not affect land ownership or establish a refuge, wilderness, reserve, preserve, or other conservation area. Designation also does not allow the government or public to access private lands, nor does designation require implementation of restoration, recovery, or enhancement measures by non-Federal landowners. Where a landowner requests Federal agency funding or authorization for an action that may affect a listed species or critical habitat, the Federal agency would be required to consult with the Service under section 7(a)(2) of the Act. However, even if the Service were to conclude that the proposed activity would result in destruction or adverse modification of the critical habitat, the Federal action agency and the landowner are not required to abandon the proposed activity, or to restore or recover the species; instead, they must implement “reasonable and prudent alternatives” to avoid destruction or adverse modification of critical habitat.

Section 4 of the Act requires that we designate critical habitat on the basis of the best scientific data available. Further, our Policy on Information Standards Under the Endangered Species Act (published in the Federal Register on July 1, 1994 (59 FR 34271)), the Information Quality Act (section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Pub. L. 106-554; H.R. 3658)), and our associated Information Quality Guidelines provide criteria, establish procedures, and provide guidance to ensure that our decisions are based on the best scientific data available. They require our biologists, to the extent consistent with the Act and with the use of the best scientific data available, to use primary and original sources of information as the basis for recommendations to designate critical habitat.

Prudence Determination

Section 4(a)(3) of the Act, as amended, and implementing regulations (50 CFR 424.12) require that, to the maximum extent prudent and determinable, the Secretary shall designate critical habitat at the time the species is determined to be an endangered or threatened species. Our regulations (50 CFR 424.12(a)(1)) state that the Secretary may, but is not required to, determine that a designation would not be prudent in the following circumstances:

(i) The species is threatened by taking or other human activity and identification of critical habitat can be expected to increase the degree of such threat to the species; or

(ii) The present or threatened destruction, modification, or curtailment of a species’ habitat or range is not a threat to the species, or threats to the species’ habitat stem solely from causes that cannot be addressed through management actions resulting from consultations under section 7(a)(2) of the Act;

(iii) Areas within the jurisdiction of the United States provide no more than negligible conservation value, if any, for a species occurring primarily outside the jurisdiction of the United States;

(iv) No areas meet the definition of critical habitat;

(v) The Secretary otherwise determines that designation of critical habitat would not be prudent based on the best scientific data available.

We find that designating critical habitat for the bog buck moth is not prudent based on the best scientific data available.

We find that designating critical habitat for the bog buck moth is not prudent based on the best scientific data available. We find that designating critical habitat for the bog buck moth is not prudent based on the best scientific data available. We find that designating critical habitat for the bog buck moth is not prudent based on the best scientific data available. We find that designating critical habitat for the bog buck moth is not prudent based on the best scientific data available. We find that designating critical habitat for the bog buck moth is not prudent based on the best scientific data available.

Required Determinations

Clarity of the Rule

We are required by Executive Orders 12866 and 12988 and by the Presidential Memorandum of June 1, 1998, to write all rules in plain language. This means that each rule we publish must:

(1) Be logically organized;

(2) Use the active voice to address readers directly;

(3) Use clear language rather than jargon;

(4) Be divided into short sections and sentences; and

(5) Use lists and tables wherever possible.

If you feel that we have not met these requirements, send us comments by one of the methods listed in **ADDRESSES**. To better help us revise the rule, your comments should be as specific as possible. For example, you should tell us the numbers of the sections or paragraphs that are unclearly written, which sections or sentences are too long, the sections where you feel lists or tables would be useful, etc.

National Environmental Policy Act (42 U.S.C. 4321 et seq.)

We have determined that environmental assessments and environmental impact statements, as defined under the authority of the National Environmental Policy Act (NEPA; 42 U.S.C. 4321 et seq.), need not be prepared in connection with listing a species as an endangered or threatened species under the Endangered Species Act. We published a notice outlining our reasons for this determination in the Federal Register on October 25, 1983 (48 FR 49244).

Government-to-Government Relationship With Tribes

In accordance with the President’s memorandum of April 29, 1994 (Government-to-Government Relations with Native American Tribal Governments; 59 FR 22951), Executive Order 13175 (Consultation and Coordination with Indian Tribal Governments), and the Department of the Interior’s manual at 512 DM 2, we readily acknowledge our responsibility...
to communicate meaningfully with recognized Federal Tribes on a government-to-government basis. In accordance with Secretarial Order 3206 of June 5, 1997 (American Indian Tribal Rights, Federal-Tribal Trust Responsibilities, and the Endangered Species Act), we readily acknowledge our responsibilities to work directly with Tribes in developing programs for healthy ecosystems, to acknowledge that Tribal lands are not subject to the same controls as Federal public lands, to remain sensitive to Indian culture, and to make information available to Tribes. There are no known Tribal lands with bog buck moth populations. However, we will coordinate with Tribes to determine their interest in this proposed rule throughout the listing process as appropriate.

References Cited
A complete list of references cited in this rulemaking is available on the internet at http://www.regulations.gov and upon request from the New York Ecological Services Field Office (see FOR FURTHER INFORMATION CONTACT).

Authors
The primary authors of this proposed rule are the staff members of the Service’s Species Assessment Team and the New York Ecological Services Field Office.

List of Subjects in 50 CFR Part 17
Endangered and threatened species, Exports, Imports, Reporting and recordkeeping requirements, Transportation.

Proposed Regulation Promulgation
Accordingly, we propose to amend part 17, subchapter B of chapter I, title 50 of the Code of Federal Regulations, as set forth below:

PART 17—ENDANGERED AND THREATENED WILDLIFE AND PLANTS

1. The authority citation for part 17 continues to read as follows:
 Authority: 16 U.S.C. 1361–1407; 1531–1544; and 4201–4245, unless otherwise noted.

2. Amend § 17.11(h) by adding an entry for “Moth, bog buck” to the List of Endangered and Threatened Wildlife in alphabetical order under Insects to read as set forth below:

 § 17.11 Endangered and threatened wildlife.

 * * * * * *(h) * * *

<table>
<thead>
<tr>
<th>Common name</th>
<th>Scientific name</th>
<th>Where listed</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

INSECTS

* Moth, bog buck Hemileuca maia menyantherevora (=H. iroquois).

Wherever found E

[Federal Register citation when published as a final rule].

* * * * * *

Martha Williams,
Principal Deputy Director, Exercising the Delegated Authority of the Director, U.S. Fish and Wildlife Service.

[FR Doc. 2021–21856 Filed 10–13–21; 8:45 am]

BILLING CODE 4333–15–P